Leveraging Metropolis-Hastings Algorithm on Graph-based Model for Multimodal IR

نویسندگان

  • Serwah Sabetghadam
  • Mihai Lupu
  • Andreas Rauber
چکیده

The velocity of multimodal information shared on web has increased significantly. Many reranking approaches try to improve the performance of multimodal retrieval, however not in the direction of true relevancy of a multimodal object. Metropolis-Hastings (MH) is a method based on Monte Carlo Markov Chain (MCMC) for sampling from a distribution when traditional sampling methods such as transformation or inversion fail. If we assume this probability distribution as true relevancy of documents for an information need, in this paper we explore how leveraging our model with Metropolis-Hastings algorithm may help towards true relevancy in multimodal IR.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ADAPTIVE RADIAL-BASED DIRECTION SAMPLING: Some flexible and robust Monte Carlo integration methods

Adaptive radial-based direction sampling (ARDS) algorithms are specified for Bayesian analysis of models with nonelliptical, possibly, multimodal target distributions. A key step is a radial-based transformation to directions and distances. After the transformations a Metropolis-Hastings method or, alternatively, an importance sampling method is applied to evaluate generated directions. Next, d...

متن کامل

A Monte Carlo Metropolis-Hastings Algorithm for Sampling from Distributions with Intractable Normalizing Constants

Simulating from distributions with intractable normalizing constants has been a long-standing problem in machine learning. In this letter, we propose a new algorithm, the Monte Carlo Metropolis-Hastings (MCMH) algorithm, for tackling this problem. The MCMH algorithm is a Monte Carlo version of the Metropolis-Hastings algorithm. It replaces the unknown normalizing constant ratio by a Monte Carlo...

متن کامل

Approximating Bayes Estimates by Means of the Tierney Kadane, Importance Sampling and Metropolis-Hastings within Gibbs Methods in the Poisson-Exponential Distribution: A Comparative Study

Here, we work on the problem of point estimation of the parameters of the Poisson-exponential distribution through the Bayesian and maximum likelihood methods based on complete samples. The point Bayes estimates under the symmetric squared error loss (SEL) function are approximated using three methods, namely the Tierney Kadane approximation method, the importance sampling method and the Metrop...

متن کامل

Monte Carlo Dynamically Weighted Importance Sampling For Finite Element Model Updating

The Finite Element Method (FEM) is generally unable to accurately predict natural frequencies and mode shapes of structures (eigenvalues and eigenvectors). Engineers develop numerical methods and a variety of techniques to compensate for this misalignment of modal properties, between experimentally measured data and the computed result from the FEM of structures. In this paper we compare two in...

متن کامل

Graph Generation with Prescribed Feature Constraints

In this paper, we study the problem of how to generate synthetic graphs matching various properties of a real social network with two applications, privacy preserving social network publishing and significance testing of network analysis results. We present a simple switching based graph generation approach to generate graphs preserving features of a real graph. We then investigate potential di...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015